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Abstract
Conventional cellular automata (CA) are memoryless, i.e. the new state of a
cell depends on the neighborhood configuration solely at the preceding time
step. This paper considers an extension to the standard framework of CA by
implementing memory capability in cells. It is shown that the HPP rule, one
of the most important block automaton rules, endowed with the memory of
the most frequent recent state, behaves as an excellent classifier of the density
in the initial configuration, which surpasses the performance of the best two-
dimensional density classifier reported in the literature.

PACS numbers: 05.50.+q, 45.00, 89.75.−k

(Some figures in this article are in colour only in the electronic version)

1. Cellular automata with memory

Cellular automata (CA) are discrete, spatially explicit extended dynamic systems. A CA
system is composed of adjacent cells or sites arranged as a regular lattice, which evolves in
discrete time steps. Each cell is characterized by an internal state whose value belongs to a
finite set. The updating of these states is made simultaneously according to a common local
transition rule involving only a neighborhood of each cell. Thus, if σ

(T )
i is taken to denote the

value of cell i at time step T, the site values evolve by iteration of the mapping:

σ
(T +1)
i = φ

({
σ

(T )

j

} ∈ Ni

)
,

where φ is an arbitrary function which specifies the cellular automaton rule operating on the
cells in the neighborhood (N ) of the cell i.

1751-8113/09/485101+14$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/42/48/485101
mailto:ramon.alonso@upm.es
mailto:Larry.Bull@uwe.ac.uk
http://stacks.iop.org/JPhysA/42/485101


J. Phys. A: Math. Theor. 42 (2009) 485101 R Alonso-Sanz and L Bull

Figure 1. The speed of light cellular automaton. Memoryless formulation in the upper row of
patterns, and two scenarios with majority memory below.

Conventional cellular automata are memoryless: i.e. the new state of a cell depends on
the neighborhood configuration solely at the preceding time step. The standard framework of
CA can be extended by implementing memory capabilities in cells:

σ
(T +1)
i = φ

({
s
(T )
j

} ∈ Ni

)
,

with s
(T )
j being a state function of the series of states of the cell j up to time-step T:

s
(T )
j = s

(
σ

(1)
j , . . . , σ

(T −1)
j , σ

(T )
j

)
.

Thus, in CA with memory, while the mappings φ remain unaltered, historic memory of all
past iterations is retained by featuring each cell as a summary of its past states. In otherwords,
cells canalize memory to the map φ.

A simple scenario will be taken for illustration purposes in figure 1: that of a two-
dimensional automaton with two possible state values: σ ∈ {0, 1}, with the transition rule
operating on nearest neighbors, in which a cell becomes (or remains) alive if any cell in its
neighborhood is alive, but becomes (or remains) dead otherwise. The perturbation in figure 1
spreads as fast as possible, i.e. at the speed of light.

One simple memory implementation is that of keeping track of the most frequent of the
last three states: s

(T )
i = mode

(
σ

(T −2)
i , σ

(T −1)
i , σ

(T )
i

)
, with initial conditions s

(1)
i = σ

(1)
i ,

s
(2)
i = σ

(2)
i . Such majority memory, referred to as τ = 3 majority memory, exerts a

characteristic inertial effect that tends to restrain the CA dynamics, as shown in figure 1
regarding the spread from a single seed. Increasing the length of memory increases the inertial
effect, as is shown in figure 1 with unlimited trailing memory s

(T )
i = mode

(
σ

(1)
i , . . . , σ

(T )
i

)
,

with s
(T )
i = σ

(T )
i in the case of a tie: card{1} = card{0}. With memory limited to the

last three states, the patterns in figure 1 remain stable for two time steps; thus, the speed is
halved, whereas with unlimited trailing memory the dynamics might be described in terms
of punctuated equilibrium, i.e. periods of quiescence altered by changes that take place at
well-defined steps (the punctuation marks). Shown in figure 1 are the powers of two time
steps when the automaton fires a new perimeter of live cells, so that the duration of the stable
periods tends to increase with T.

The memory mechanism considered here differs from that of other CA with memory
reported in the literature, in particular with that referred to as higher order (in-time) CA,

2



J. Phys. A: Math. Theor. 42 (2009) 485101 R Alonso-Sanz and L Bull

Rule I → → → →
Rule II → → → →
Rule III → → → →
Rule IV → → → →

Figure 2. One-dimensional block cellular automata.

such as the second-order reversible formulation σ
(T +1)
i = φ

({
σ

(T )
j

} ∈ Ni

) � σ
(T −1)
i , which

remains reversible in the form σ
(T +1)
i = φ

({
s
(T )
j

} ∈ Ni

)� σ
(T −1)
i [3]. Other possible memory

implementations, not considered here, are (i) to refer a cell of the neighborhood delayed
a number of time steps in the past. So, for example, in the context of elementary CA
the central cell may be referenced not at T but at T − 1: σ

(T +1)
i = φ

(
σ

(T )
i−1, σ

(T −1)
i , σ

(T )
i+1

)
,

(ii) the transition rule may be extended to explicitly consider the influence at time T − 1, e.g.
σ

(T +1)
i = ψ

(
σ

(T −1)
i , σ

(T )
i−1, σ

(T )
i , σ

(T )
i+1

)
or (iii) memory can be operative only in the cell to be

updated: σ
(T +1)
i = φ

(
σ

(T )
i−1, s

(T )
i , σ

(T )
i+1

)
[22].

To the best of our knowledge the study of the effect of memory on CA has not been given
the attention that it deserves. Thus, as two symptomatic examples, Wuensche and Lesser
([26], p 15) just mention the possibility of historical time reference, which is excluded from
their general study as ‘it would result in a qualitatively different behavior’, whereas Wolfram
[24], in the context of higher order linear CA, refers to a ‘somewhat involved analysis not
performed here’.

We have studied the effect of memory embedded in cells in several CA [2] and Boolean
network [4, 5] scenarios. In a recent study, we analyzed the influence of memory in the
spatialized prisoner’s dilemma [1].

2. Block cellular automata

A partitioned (or block) CA is a CA with a partitioning scheme such that the set of cells are
partitioned in some periodic way: every cell belongs to exactly one block, and any two blocks
are connected by a lattice translation. The update rule of a partitioned CA takes as input an
entire block of cells and outputs the updated state of the entire block. The rule is then applied
alternatingly to the even and to the odd translations.

In the so-called Margolus neighborhood [21], blocks are formed by 2 × 2 squares of
cells in two-dimensional lattices, or simply couples of adjacent cells in one-dimensional
registers. Four block cellular automata rules in the one-dimensional context are given in
figure 2.

The left column of patterns of figure 12 shows the spatio-temporal patterns of these
elementary one-dimensional block CA starting from a single full block, and starting at
random. The registers in the figure are of size N = 60, an even number size that can be
perfectly partitioned in blocks of size 2. Incidentally, in registers with odd number size,
such partition is not feasible, so that one border cell remains ‘untreated’ at every updating.
This might help to explain the worse efficiencies achieved in the density classification task
in odd-size registers reported in the next section. The evolution in the memoryless model of
the two initially adjacent cells under rule III in figure 12 may be interpreted as of a form of
particles collision. In fact rule III is the one-dimensional simple version of the so-called HPP

3
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Figure 3. Rules II (left) and III (right) densities with τ = 3 majority memory.

rule [14, 15], a seminal rule in gas computer modeling, properly stated in the 2D scenario in
figure 10.

Figure 12 also shows the effect of the embedding memory of the last three states and that
of unlimited trailing memory.

Rules I, III and IV are reversible, and rules II and III conserve the number of active sites
[8], i.e. they keep unaltered the initial density. When implementing the majority memory,
these rules lose the number conserving property [10], so that the evolution of the density of
active cells (ρt ) is that shown in figure 3.

3. Density classification task

The density classification task (DCT), also referred to as the majority problem, is the problem
of finding cellular automaton rules that accurately determine if an initial configuration (IC)
has more or less 1s than 0s, i.e. if the initial density (ρ0) is over or under 0.5. Ideally a correct
solution of the DCT must eventually set all cells to zero if ρ0 < 0.5, and must eventually set
all cells to one if ρ0 > 0.5. The desired eventual state is unspecified if ρ0 = 0.5.

While solving the DCT is a trivial task for any computational system with central control,
this is not the case for fully distributed systems, with local processing, as cellular automata.
Solving the DCT has attracted attention in the specialized literature, due to the hope that good
results achieved by a specific technique for DCT may be useful regarding other CA-based
problems. This problem is an important test case in measuring the computational power of
cellular automaton systems.

Although the DCT was proposed in the seventies, only in 1994 was the solution to the
problem, as formulated, proven to be impossible [17]. Thus, research efforts shifted to looking
for the best rule dealing with the DCT, i.e. the rule for which the fraction of the possible starting
configurations that are correctly classified is the highest.

The DCT may be solved if one relaxes the definition by which the automaton is said
to have recognized the initial density [9, 11]. But we will keep here the unaltered specified
natural criterion: ρ∗ = 0 if ρ0 < 0.5, ρ∗ = 1 if ρ0 > 0.5, denoting as ρ∗ the final density
achieved.

4. One dimension

The dynamics of the density under rules II and III with memory in figure 3 shows as an overall
rule that the patterns tend to drift to fixed configurations either of all 1s or of all 0s depending

4
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Figure 4. Further evolution of the instances that appear stable in the right frame of figure 3.

upon whether within the initial configuration ρ0 > 0.5 or the contrary. So far, it is foreseeable
that rules II and III endowed with memory in cells of the most frequent of the last three states,
i.e. τ = 3 majority memory, will produce good results in classifying density by leading to
steady configurations that readily indicate the correct classification. It becomes apparent from
figure 3 that these rules with memory very soon relax to the correct fixed point if the initial
density is either ρ � 0.6 or ρ � 0.4.

Rule II is equivalent to the elementary CA rule 184 [9], whose properties regarding density
classification with memory were outlined in [6, 7]; thus, we will focus here on rule III. Two
examples of this rule with τ = 3 majority memory starting from low and high initial densities
are given in figure 13, showing how this rule with memory readily relaxes in both cases to the
fixed point that correctly classifies the initial configuration.

The drift of density is much slower in the oversampled [0.4, 0.6] interval in figure 3,
but the steady configurations are ever reached. This is so even for the particular cases that
appear stabilized up to T = 300 in the right frame of figure 3, corresponding to initial actual
densities 0.4975 and 0.5025 but coincident after T = 150, whose further evolution is shown in
figure 4. Thus, only the configuration with initial density 0.4975 in figure 4 is misclassified
by the τ = 3 rule III. The spatio-temporal pattern starting from the correctly classified
ρ0 = 0.5025 is shown in figure 14, in which the goal of every cell at 1 is achieved unusually
late, at T = 1530.

In a simulation of 10 series of 1000 uniformly distributed initial densities in the [0.0, 1.0]
interval, with every simulation run up to T = 1600 in a register with n = 400 cells, only 66
densities in the [0, 48, 0.52] interval were incorrectly classified. The GKL rule3 [12, 13], one
of best density classifier rules, when applied to the same series misclassified 160 densities.

Both GKL and rules with τ = 3 majority memory have in common the presence of the
majority operation, that seems to be in the origin of excellent results in the density task. In fact
the majority rule has been implemented regarding the DCT not only in the perfectly structured
CA context, but also in the so-called CA on graphs, e.g., in the small-world networks in [23],
and in the noisy communication between units and asynchronous updating contexts addressed
in [18]. This study adopts the majority rule (still with radius 3) as a better alternative to the
GKL, which shows a poor DCT performance in the aforementioned non-idealized structure
of interactions. The authors support their choice of the majority rule in [18] as ‘a plausible
heuristic to reaching the consensus’ because ‘it is reasonable to hypothesize that in real-world
systems the units make their decisions by using simple heuristics that are robust against errors
and do not depend on the precise structure of interactions’.

3 σ
(T +1)
i =

⎧⎪⎨
⎪⎩

mode
(
σ

(T )
i , σ

(T )
i−1, σ

(T )
i−3

)
if σ

(T )
i = 0

mode
(
σ

(T )
i , σ

(T )
i+1 , σ

(T )
i+3

)
if σ

(T )
i = 1
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Figure 5. Evolution of the density in rule III with τ = 3 majority memory in a n = 150 register.
Left: uniform simulation of initial density. Right: binomial simulation of initial cell states.
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Figure 6. Density evolution in the scenarios of figure 5, but in a n = 149 register.

To test the performance of rules in more challenging scenarios, initial configurations are
to be generated binomially distributed, i.e. with every cell in the register given a state value
equiproblably. In 104 binomially generated IC, discarding the 419 configurations in which the
number of zeros is exactly equal to that of ones, i.e. the unclassificable ρ0 = 0.5, resulted an
efficiency in the correct classification (referred to as ετ in simulations with majority memory
of length τ ) of ε3 = 81.002%. Increasing the length of the trailing memory up to τ = 4 seems
to slightly increase the capacity to discriminate density, ε4 = 81.192% in our simulation.
Beyond this trailing length, inertial effects characteristic of the majority memory, oppose the
drift to the all 1s or all 0s intended in the density classification: ε5 = 78.061%, ε6 = 78.238%,
ε7 = 75.952%, ε8 = 75.775%. It seems that τ = 3 as length of the majority memory is a good
(and simple) choice regarding the density task.

In order to compare the block rules with memory here with other rules effectively solving
the density task, the remaining result reported in this paper concerning the one-dimensional
scenario apply for registers of size n = 149 and n = 150. Thus, in figure 5, with n = 150
the τ = 3 rule III proves to be faster in its drift to a steady configuration compared to the
n = 400 scenario, mainly indicating the correct density classification. Thus, only one instance
is misclassified in the left frame of figure 5, with ρ0 = 0.5067, whereas in the binomially
simulated IC in the right frame of figure 5, only three instances are incorrectly classified, one
of which is shown in figure 15. Figure 6 refers to the odd size n = 149. No instance is
misclassified in the left frame of figure 6, and only five instances are incorrectly classified in
the binomially IC simulated right frame.
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Table 1. Percentage of correctly classified densities in a simulation of one million of binomially
generated initial configurations. Rule III with majority memory of length τ in one-dimensional
registers of size n.

τ = 3 τ = 4 τ = 5 τ = 6

n = 150 85.049 85.641 82.530 82.839
n = 149 81.562 82.026 79.152 79.346

The results on efficiency in a simulation of one million of binomially generated initial
configurations in registers of sizes 150 and 149 (similar sizes to that in [25]), evolving up to
T = 2000, are shown in table 1. In the n = 150 context of table 1, 65 215 � 6.5% IC were
unclassificable ones with ρ0 = 0.5.

The figures in table 1 are notable compared to those reported in the literature; nevertheless,
they are surpassed for the best ones, those reported in [25], which reach ε3 = 88.9%. It turns
out that the efficiency in the simulations in registers of even size is higher than in those in the
n = 149 size registers (in which the GKL rule reaches ε3 = 81.6%), and that τ = 4 is a slightly
better choice than τ = 3. As noted above, increasing the trailing length of memory increases
the inertial effects that oppose the density discrimination, so that the figures of efficiency in
table 1 are lower for τ = 5, 6.

An example of misclassification with n = 149 is given in figure 16.
A low fraction of the initial configurations turn out to be unclassified due to the

lack of convergence to any of the extreme configurations, i.e. all 1s or all 0s. These
unclassified configurations are counted as misclassified to compute the efficiency in the density
discrimination. An example is given in figure 17, in which case the density gets fixed to 0.5
as soon as the pattern becomes perfectly symmetric. This is usually the kind of dynamics
that impedes the density discrimination, which explains why unclassified configurations are
mostly found dealing with even-size registers. In the n = 150 context of table 1, the number
of unclassified configurations were 6950 � 0.7%, 4218, 6625 and 4322 from τ = 3 up to
τ = 6. With n = 149, the number of unclassified configurations were lower: 1756, 1130, 0
and 3. Nevertheless, misclassified IC, the important numerical component of the not correctly
classified configurations, are notably less frequent in the even-size lattice simulations.

5. Two dimensions

Figure 7 refers to two-dimensional lattices [20] evolving under the HPP rule (as defined
in figure 10) with τ = 3 majority memory. The classification under this rule becomes
remarkably straightforward, moreover if attention is paid to the fact that evolution is shown
up to T = 100, not up to T = 300, as in the equivalent figure in the one-dimensional scenario,
i.e. figure 5. Figure 8 shows two examples of the evolution in the first four time steps, starting
from high (�90%) and low (�10%) densities. As soon as memory becomes operative,
i.e. at T = 4, the patterns are dramatically skewed to follow their correct classifier steady
configuration.

The results on efficiency in a simulation of 105 binomially generated initial configurations
in 22 × 22, and 21 × 21 size lattices (similar sizes to that in [25]), as well as in the bigger
lattices of sizes 32 × 22, and 31 × 31, are shown in table 2. The automata in table 2 evolve
up to T = 200 in n = 22 lattices, thus one tenth of the time steps of that in table 1, up
to T = 300 in n = 21 lattices and up to T = 500 in n = 32, 31 side size lattices. In
the n = 22 and n = 32 contexts of table 2, 3.6 and 2.3% configurations respectively were
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Figure 7. Evolution of the density in the HPP rule with τ = 3 majority memory in a 22 × 22
lattice. Left: uniform simulation of initial density. Right: binomial simulation of initial cell states.

Figure 8. Patterns up to T = 4 in the HPP rule with τ = 3 majority memory in a 22 × 22 lattice.

unclassificable with ρ0 = 0.5. The number of IC unclassified due to the lack of convergence
to any of the extreme configurations is much lower in the two-dimensional context compared
to the one-dimensional, under the 0.1%. The figures for the small sizes in table 2 are 3, 372,
11 and 97 for n = 22 (from τ = 3 up to τ = 6), and 40, 22, 316 and 142 for n = 21. The
unclassified 2D initial configurations often become configurations close to the extreme steady
configurations as those in figure 9, generated from ρ0 = 0.523 and ρ0 = 0.496, in the τ = 4,
n = 22 scenario.

Let us stress here that the convergence to the steady configurations is very fast. This is so
even also when dealing with binomially generated IC, as already seen graphically with τ =
3 in figure 7, and quantified in table 2. The mean values of the time up to convergence to
steady configurations of classified IC are notably higher in odd-side size lattices than in their
close even-size ones. Thus, in the odd-side size lattices not only is the efficiency lower than
in the even-size, but the convergence to the steady configurations takes longer, approximately
double the number of time steps.
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Figure 9. Stable configurations in the HPP rule with τ = 4 majority memory in a 22 × 22 lattice.

Figure 10. Two-dimensional block cellular automata. The lower row shows the evolution of the
upper row by rule.
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Figure 11. Evolution of the density in the BBM (left) and Critters (right) rules with τ = 3 majority
memory in a 22 × 22 lattice.

Table 2. Percentage of correctly classified densities and average time up to convergence of
classified configurations. HPP rule with majority memory of length τ in two-dimensional lattices
of size n × n. Simulation of 105 binomially generated initial configurations.

τ = 3 τ = 4 τ = 5 τ = 6

n = 22 88.648 43 92.767 42 87.368 52 89.779 48
n = 21 84.235 83 87.877 84 82.821 99 84.811 96
n = 32 87.171 66 91.131 63 85.798 79 87.744 74
n = 31 82.646 130 85.076 130 81.157 157 83.811 152
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Figure 12. Elementary one-dimensional block CA starting from a single full block (upper), and at
random (below).

10



J. Phys. A: Math. Theor. 42 (2009) 485101 R Alonso-Sanz and L Bull

Figure 13. Rule III block CA with τ = 3 majority memory, starting at random.

Figure 14. Spatio-temporal patterns under rule III with τ = 3 majority memory from a
configuration with ρ = 0.5025. Evolution up to T = 1530.

As the size of the lattices increases from 21–22 to 31–32, the performance of the
rules decreases, and the convergence takes longer. In this comparison, the difference in
the convergence time seems notable, but the decay in the classification performance is not too
high, lower than 2%.

The efficiencies in the n = 21 side lattice table 2 overcomes that of the best rule reported
in [19]: ε � 70.0%, and that corresponding to τ = 4 also surpasses the highest efficiency
reported in [25]: ε = 83.27%. In the odd-side size lattice, the one-dimensional rule III has
been applied to the two odd border sides at every time step. Without this updating of border
cells, the efficiency in the density discrimination declines dramatically. The progress made by
the HPP rule with memory in the even-side size lattice, in which case the block partitioning
covers the whole lattice every time step, is highly remarkable.

The maximum efficiency in table 2 is reached, as in the one-dimensional context, when
tracking memory of the four last time steps. Further comparison to other DCT rules,
particularly those reported in [16], will be made in the next section.

11
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Figure 15. Wrong classified density ρ0 = 0.4933. Evolution up T = 650 in a register of size
n = 150. The density evolution is shown over the spatio-temporal pattern.

Figure 16. Wrong classified density ρ0 = 0.5370. Evolution up T = 600 in a register of size
n = 149.

Other 2D block cellular automata have been checked regarding the DCT, but showed poor
results. Thus for example, in figure 11, the Billiard Ball Machine (BBM) [21], seems not to be
active enough to promote the drift to the extreme steady configurations, whereas the Critters
rule (a rule supporting gliders [21]) leads to configurations oscillating nearly 0.5, regardless the
initial density. Both BBM and Critters rules are defined in figure 10. Evolutionary techniques
[16] may help in the search for more efficient, albeit also more sophisticated, partitioned CA
density classifiers.

12
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Figure 17. Unclassified configuration. Evolution up to T = 650, n = 149.

6. Conclusion

When the cells of a simple block cellular automaton, well known in the literature as HPP,
are endowed with majority memory of their last states, the HPP automaton proved to be a
remarkably good density classifier when operating in two-dimensional lattices. The percentage
of correct classification in the best memory implementations reaches 90% (some over this figure
in even-side size lattices, and close to it in odd-side size lattices), surpassing the performance
of the best two-dimensional density classifier reported in the literature. In the one-dimensional
scenario, the HPP automaton with memory turns out to also be a notable density classifier,
though other conventional rules of radius 3 are known to outperform it.

Although no theoretical attempt is made in this experimental study to explain the good
performance of the HPP rule endowed with majority memory in cells, several heuristic reasons
may be argued to support it: (i) HPP is a number conserving rule, as the reputed DCT-solver
elementary rule 184, (ii) HPP allows for information transmission as the good classifiers
reported in [16] in 2D lattices, and, last but not least, (iii) the majority operation seems to be
present in most of the good density classifiers, such as the GKL and the non-local majority
in structured CA [16], and other generalized majority rules in non-local networks [23] and in
noisy environments [18].
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